Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Popul Health Manag ; 26(1): 29-36, 2023 02.
Article in English | MEDLINE | ID: covidwho-2265755

ABSTRACT

Individuals at increased risk for severe coronavirus disease-2019 (COVID-19) outcomes, due to compromised immunity or other risk factors, would benefit from objective measures of vulnerability to infection based on vaccination or prior infection. The authors reviewed published data to identify a specific role and interpretation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike-targeted serology testing. Specific recommendations are provided for an evidence-based and clinically-useful interpretation of SARS-CoV-2 spike-targeted serology to identify vulnerability to infection and potential subsequent adverse outcomes. Decreased vaccine effectiveness among immunocompromised individuals is linked to correspondingly high rates of breakthrough infections. Negative results on SARS-CoV-2 antibody tests are associated with increased risk for subsequent infection. "Low-positive" results on semiquantitative SARS-CoV-2 spike-targeted antibody tests may help identify persons at increased risk as well. Standardized SARS-CoV-2 spike-targeted antibody tests may provide objective information on the risk of SARS-CoV-2 infection and associated adverse outcomes. This holds especially for high-risk populations that demonstrate a relatively high rate of seronegativity. The widespread availability of such tests presents an opportunity to refine risk assessment for individuals with suboptimal SARS-CoV-2 antibody levels and to promote effective interventions. Interim federal guidance would support physicians and patients while additional investigations are pursued.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Viral , Breakthrough Infections
3.
PLoS One ; 18(3): e0280584, 2023.
Article in English | MEDLINE | ID: covidwho-2278210

ABSTRACT

This retrospective observational study aimed to gain a better understanding of the protective duration of prior SARS-CoV-2 infection against reinfection. The objectives were two-fold: to assess the durability of immunity to SARS-CoV-2 reinfection among initially unvaccinated individuals with previous SARS-CoV-2 infection, and to evaluate the crude SARS-CoV-2 reinfection rate and associated risk factors. During the pandemic era time period from February 29, 2020, through April 30, 2021, 144,678,382 individuals with SARS-CoV-2 molecular diagnostic or antibody test results were studied. Rates of reinfection among index-positive individuals were compared to rates of infection among index-negative individuals. Factors associated with reinfection were evaluated using multivariable logistic regression. For both objectives, the outcome was a subsequent positive molecular diagnostic test result. Consistent with prior findings, the risk of reinfection among index-positive individuals was 87% lower than the risk of infection among index-negative individuals. The duration of protection against reinfection was stable over the median 5 months and up to 1-year follow-up interval. Factors associated with an increased reinfection risk included older age, comorbid immunologic conditions, and living in congregate care settings; healthcare workers had a decreased reinfection risk. This large US population-based study suggests that infection induced immunity is durable for variants circulating pre-Delta predominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection/epidemiology , COVID-19/epidemiology , Antibodies , Health Personnel
4.
Lancet regional health Americas ; 18:100403-100403, 2022.
Article in English | EuropePMC | ID: covidwho-2147777

ABSTRACT

Background Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%–8.1%) in November 2020 to 58.2% (CI: 57.4%–58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8–2.9) during winter 2020–2021, 2.3 (CI: 2.0–2.5) during summer 2021, and 3.1 (CI: 3.0–3.3) during winter 2021–2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3–2.8) to 3.5 (CI: 3.3–3.7) by region in winter 2021–2022. Interpretation Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021–2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding This work was supported by the 10.13039/100000030Centers for Disease Control and Prevention, Atlanta, Georgia.

5.
Lancet Reg Health Am ; 18: 100403, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2131781

ABSTRACT

Background: Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods: Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings: Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%-8.1%) in November 2020 to 58.2% (CI: 57.4%-58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8-2.9) during winter 2020-2021, 2.3 (CI: 2.0-2.5) during summer 2021, and 3.1 (CI: 3.0-3.3) during winter 2021-2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3-2.8) to 3.5 (CI: 3.3-3.7) by region in winter 2021-2022. Interpretation: Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021-2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding: This work was supported by the Centers for Disease Control and Prevention, Atlanta, Georgia.

6.
Am J Prev Med ; 61(3): 369-376, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258300

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has disrupted healthcare services, reducing opportunities to conduct routine hepatitis C virus antibody screening, clinical care, and treatment. Therefore, people living with undiagnosed hepatitis C virus during the pandemic may later become identified at more advanced stages of the disease, leading to higher morbidity and mortality rates. Further, unidentified hepatitis C virus-infected individuals may continue to unknowingly transmit the virus to others. METHODS: To assess the impact of the COVID-19 pandemic, data were evaluated from a large national reference clinical laboratory and from national estimates of dispensed prescriptions for hepatitis C virus treatment. Investigators estimated the average number of hepatitis C virus antibody tests, hepatitis C virus antibody-positive test results, and hepatitis C virus RNA-positive test results by month in January-July for 2018 and 2019, compared with the same months in 2020. To assess the impact of hepatitis C virus treatment, dispensed hepatitis C virus direct-acting antiretroviral medications were examined for the same time periods. Statistical analyses of trends were performed using negative binomial models. RESULTS: Compared with the 2018 and 2019 months, hepatitis C virus antibody testing volume decreased 59% during April 2020 and rebounded to a 6% reduction in July 2020. The number of hepatitis C virus RNA-positive results fell by 62% in March 2020 and remained 39% below the baseline by July 2020. For hepatitis C virus treatment, prescriptions decreased 43% in May, 37% in June, and 38% in July relative to the corresponding months in 2018 and 2019. CONCLUSIONS: During the COVID-19 pandemic, continued public health messaging, interventions and outreach programs to restore hepatitis C virus testing and treatment to prepandemic levels, and maintenance of public health efforts to eliminate hepatitis C infections remain important.


Subject(s)
COVID-19 , Hepatitis C , Hepacivirus , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Humans , Pandemics , SARS-CoV-2
7.
Popul Health Manag ; 24(S1): S35-S42, 2021 02.
Article in English | MEDLINE | ID: covidwho-1236196

ABSTRACT

Serologic tests for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provide information on past infection and immune response. To better understand the persistence of immune response and the proportion of the population who can develop one, the authors assessed patterns of immunoglobulin G (IgG) positivity over time in individuals tested for SARS-CoV-2 RNA or IgG at a large national reference laboratory. More than 2.4 million SARS-CoV-2 IgG serology (initiated April 21, 2020) and 6.6 million nucleic acid amplification testing (NAAT) (initiated March 9, 2020) results on persons from across the United States as of July 10, 2020 were analyzed. Additional IgG serology results through August 11, 2020 were used for one household analysis. SARS-CoV-2 IgG positivity was observed in 91% (19,434/21,452) of individuals tested after a positive NAAT result and in 10% (7,831/80,968) after a negative NAAT result. Factors associated with seropositivity include age, region of patient residence, and interval between NAAT and IgG serology. The probability of persistent IgG seropositivity declined from 98.6% after 1 week to 74.3% after 2 months, less so in individuals ages ≥55 years than in younger groups. Specimens within 2 days from pairs of same-household members showed 92% IgG antibody concordance. Household adults were more frequently IgG positive prior to household children testing positive (36% versus 8%). IgG serology testing can identify an immune response to SARS-CoV-2 that varies based on age, sex, and duration since exposure. Loss of detectable IgG seropositivity occurs, in some patients, over weeks or months. Adults may be infecting household children.


Subject(s)
Antibodies, Viral/blood , COVID-19 , Immunoglobulin G/blood , SARS-CoV-2 , Adolescent , Adult , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Laboratories , Male , Middle Aged , Nucleic Acid Amplification Techniques , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Serologic Tests , United States , Young Adult
8.
JAMA Intern Med ; 181(5): 672-679, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1098863

ABSTRACT

Importance: Understanding the effect of serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on susceptibility to infection is important for identifying at-risk populations and could have implications for vaccine deployment. Objective: The study purpose was to evaluate evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among patients with positive vs negative test results for antibodies in an observational descriptive cohort study of clinical laboratory and linked claims data. Design, Setting, and Participants: The study created cohorts from a deidentified data set composed of commercial laboratory tests, medical and pharmacy claims, electronic health records, and hospital chargemaster data. Patients were categorized as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test in the database. Main Outcomes and Measures: Primary end points were post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, including recorded signs and symptoms or prior evidence of coronavirus 2019 (COVID) diagnoses or positive NAAT results and recorded comorbidities. Results: The cohort included 3 257 478 unique patients with an index antibody test; 56% were female with a median (SD) age of 48 (20) years. Of these, 2 876 773 (88.3%) had a negative index antibody result, and 378 606 (11.6%) had a positive index antibody result. Patients with a negative antibody test result were older than those with a positive result (mean age 48 vs 44 years). Of index-positive patients, 18.4% converted to seronegative over the follow-up period. During the follow-up periods, the ratio (95% CI) of positive NAAT results among individuals who had a positive antibody test at index vs those with a negative antibody test at index was 2.85 (95% CI, 2.73-2.97) at 0 to 30 days, 0.67 (95% CI, 0.6-0.74) at 31 to 60 days, 0.29 (95% CI, 0.24-0.35) at 61 to 90 days, and 0.10 (95% CI, 0.05-0.19) at more than 90 days. Conclusions and Relevance: In this cohort study, patients with positive antibody test results were initially more likely to have positive NAAT results, consistent with prolonged RNA shedding, but became markedly less likely to have positive NAAT results over time, suggesting that seropositivity is associated with protection from infection. The duration of protection is unknown, and protection may wane over time.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19 , Disease Susceptibility , SARS-CoV-2 , Adult , Age Factors , Antibodies, Viral/isolation & purification , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Correlation of Data , Disease Susceptibility/diagnosis , Disease Susceptibility/epidemiology , Disease Susceptibility/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , United States/epidemiology , Virus Shedding/immunology
9.
JAMA Intern Med ; 181(4): 450-460, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-965464

ABSTRACT

Importance: Case-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely underestimates the true prevalence of infections. Large-scale seroprevalence surveys can better estimate infection across many geographic regions. Objective: To estimate the prevalence of persons with SARS-CoV-2 antibodies using residual sera from commercial laboratories across the US and assess changes over time. Design, Setting, and Participants: This repeated, cross-sectional study conducted across all 50 states, the District of Columbia, and Puerto Rico used a convenience sample of residual serum specimens provided by persons of all ages that were originally submitted for routine screening or clinical management from 2 private clinical commercial laboratories. Samples were obtained during 4 collection periods: July 27 to August 13, August 10 to August 27, August 24 to September 10, and September 7 to September 24, 2020. Exposures: Infection with SARS-CoV-2. Main Outcomes and Measures: The proportion of persons previously infected with SARS-CoV-2 as measured by the presence of antibodies to SARS-CoV-2 by 1 of 3 chemiluminescent immunoassays. Iterative poststratification was used to adjust seroprevalence estimates to the demographic profile and urbanicity of each jurisdiction. Seroprevalence was estimated by jurisdiction, sex, age group (0-17, 18-49, 50-64, and ≥65 years), and metropolitan/nonmetropolitan status. Results: Of 177 919 serum samples tested, 103 771 (58.3%) were from women, 26 716 (15.0%) from persons 17 years or younger, 47 513 (26.7%) from persons 65 years or older, and 26 290 (14.8%) from individuals living in nonmetropolitan areas. Jurisdiction-level seroprevalence over 4 collection periods ranged from less than 1% to 23%. In 42 of 49 jurisdictions with sufficient samples to estimate seroprevalence across all periods, fewer than 10% of people had detectable SARS-CoV-2 antibodies. Seroprevalence estimates varied between sexes, across age groups, and between metropolitan/nonmetropolitan areas. Changes from period 1 to 4 were less than 7 percentage points in all jurisdictions and varied across sites. Conclusions and Relevance: This cross-sectional study found that as of September 2020, most persons in the US did not have serologic evidence of previous SARS-CoV-2 infection, although prevalence varied widely by jurisdiction. Biweekly nationwide testing of commercial clinical laboratory sera can play an important role in helping track the spread of SARS-CoV-2 in the US.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Serological Testing , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , United States/epidemiology , Young Adult
10.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: covidwho-721186

ABSTRACT

A total of 1,200 serum samples that were tested for SARS-CoV-2 IgG antibody using the Abbott Architect immunoassay targeting the nucleocapsid protein were run in 3 SARS-CoV-2 IgG immunoassays targeting spike proteins (DiaSorin Liaison, Ortho Vitros, and Euroimmun). Consensus-positive and consensus-negative interpretations were defined as qualitative agreement in at least 3 of the 4 assays. Agreement of the 4 individual assays with a consensus-negative interpretation (n = 610) ranged from 96.7% to 100%, and agreement with a consensus-positive interpretation (n = 584) ranged from 94.3% to 100%. Laboratory-developed inhibition assays were utilized to evaluate 49 consensus-negative samples that were positive in only one assay; true-positive reactivity was confirmed in only 2 of these 49 (4%) samples. These findings demonstrate very high levels of agreement among 4 SARS-CoV-2 IgG assays authorized for emergency use, regardless of antigen target or assay format. Although false-positive reactivity was identified, its occurrence was rare (no more than 1.7% of samples for a given assay).


Subject(s)
Coronavirus Infections , Nucleocapsid , Pandemics , Pneumonia, Viral , Severe acute respiratory syndrome-related coronavirus , Antibodies, Viral , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , Immunoassay , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL